Accèder directement au contenu

Associated laboratories : ESPCI Paris

Nanobiophysique

Thèmes de recherche : Nos projets de recherche sont focalisés sur les molécules d’ADN et d’ARN et quelques processus biologiques associés. D’une part nous développons des études in vitro basée sur des mesures à l’échelle de la molécule unique (mesures de force par piège optique, mesure de fluorescence sm-FRET-TIRF, translocation à travers de nanopores) afin de compléter l’information obtenue par des techniques classiques de la biologie moléculaire. D’autre part, nous travaillons sur une nouvelle technique purement électronique de détection de l’ADN.
Contact : Ulrich Bockelmann

MMN : Microfluidique, MEMS, Nanostructure

Son activité vise à explorer les possibilités offertes par la technologie microfluidique dans des domaines comme la chimie, la biologie, la matière molle. Cela nous amène à aborder des questions fondamentales comme le glissement de fluides le long de surfaces, instrumentales comme la nanoPIV, ou relevant du génie chimique comme la synthèse de nouveaux objets à partir de micro/nanogouttes. L’activité de l’équipe se base sur un équilibre entre études fondamentales et appliquées, dans un cadre pluridisciplinaire reposant sur de nombreuses collaborations avec des équipes universitaires/CNRS ou des entreprises.
Contact : Patrick Tabeling

Sleep neuronal network

Research : Physiology and development of sleep neuronal network. Our group is interested in deciphering the cellular and molecular characteristics of two neuronal groups located in the preoptic region and the hypothalamus that respectively induce the slow wave sleep and the paradoxal sleep. To achieve our goal complementary approaches are performed such as ex vivo electrophysiology coupled to multiplex RT-PCR and labelling of individual neurons, transcriptome analysises and optogenetic. In addition, we are also developing in vivo optogenetic tools and using several mouse strains to act on these specific neuronal populations in order to thoroughly determine their role in the sleep neuronal network.
Contacts : Thierry Gallopin

Genes and Dynamics of Memory Systems

Although the drosophila brain contains a small number of neurons, it is highly structured and controls sophisticated behaviors. Furthermore, the drosophila brain uses the same building blocks as the mammals one (neurotransmitters, signal transduction cascades, transcription factors), and most of the molecular mechanisms underlying memory processes are conserved throughout evolution.
Our team studies the basic mechanisms of olfactory learning and memory. We develop an integrated approach ranging from molecular studies to behavioral analyses, through the functional study of networks. The genetic tools developed in drosophila allow us to vary at will the expression of genes of interest in the memory centers of the adult, and to manipulate the activity of specific neuronal networks during aversive or appetitive learning, consolidation or memory retrieval. Within neuronal networks, the activity of biochemical pathways of interest is studied using genetically encoded fluorescent probes, whose activity is monitored in vivo by confocal or two-photon microscopy. In addition, we use Drosophila as a model system to study aspects of the pathophysiology of Alzheimer’s disease.
Contact : Thomas Preat

GCRN : Genes Circuits Rhythms Neuropathology

Our research program generally aims at understanding how the brain controls motor activity, and how aging or some neurodegenerative pathologies, such as Parkinson’s disease, alter this function.
We try to identify neuronal networks involved in initiating and regulating motor activity in Drosophila, and circadian mechanisms which modulate them.
Our approaches combine neurogenetics and brain imaging. The use of Drosophila is justified, since its motricity is easily quantifiable, and increasingly sophisticated tools allow to follow or modify the activity of its neurons in vivo. In addition, models for the main human neurodegenerative diseases have been developed and are routinely studied in this organism.
Contact : Serge Birman and Andre Klarsfeld